NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories

Andiry Xu, Steven Swanson

Non-volatile Systems Laboratory
Department of Computer Science and Engineering
University of California, San Diego

NVSL & UCSD

Non-volatile Systems Laboratory @ Computer Science and Engineering 1

NOVA overview

* NOVA extends LFS to leverage non-volatile memories

* NOVA proposes per-inode logging

* High performance + Strong atomicity

— 3.1x to 13.5x to file systems that have equally strong consistency
guarantees in write-intensive workloads

* POSIX compliant

https://github.com/NVSL/NOVA

2

Hybrid DRAM/NVMM system

* Non-volatile main memory (NVMM)
— PCM, STT-RAM, ReRAM, 3D XPoint technology

* File system for NVMM

Disk-based file systems are inadequate for NVMM

s, s, 285, NI e
order | dataj
 Built for hard disks and SSDs 1-Sector

overwrite

— Software overhead is high

1-Sector
: VAN YA A
— CPU may reorder writes to NVMM append &
. . . 1-Block
— NVMM has different atomicity guarantees o X X v v X
1-Block X Y v v v
. append
* Cannot exploit NVMM performance ny——
: X X X X
.. . . write/append
e Performance optimization compromises \Block
: : - VAN A A Y
consistency on system failure [1] prefix/append | X

[1] Pillai et al, All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent
Applications, OSDI '14. 4

NVMM file systems are not strongly consistent

BPFS, PMFS, Ext4-DAX, SCMFS, Aerie
None of them provide strong metadata and data consistency

atom|C|ty atomicity Atom|C|ty[1]
BPFS Yes [2]
CONOVAL L ves Yes Yes

[1] Each msync() commits updates atomically.
[2] In BPFS, write times are not updated atomically with respect to the write itself. 5

Why LFS?

* Log-structuring provides cheaper atomicity than journaling and
shadow paging

* NVMM supports fast, highly concurrent random accesses

— Using multiple logs does not negatively impact performance
— Log does not need to be contiguous

 Rethink and redesign log-structuring entirely

NOVA design goals
* Atomicity
— Combine log-structuring, journaling and copy-on-

write Per-inode logging

High performance

— Split data structure between DRAM and NVMM

— Highly scalable , ,
Inode log >

Inode Head | Tail

A\ 4

Efficient garbage collection
— Fine-grained log cleaning with log as a linked list

— Log only contains metadata 71 Committed entry

7777771 Uncommitted entry

Fast recovery
— Lazy rebuild
— Parallel scan

Atomicity
* Log-structuring for single log update
— Write, msync, chmod, etc

— Strictly commit log entry to NVMM Tailail
before updating log tail

Directory log

\ 4
\ 4

* Lightweight journaling for update
across logs

) Tail Tail Tail
— Unlink, rename, etc 1 Vol
— Journal log tails instead of metadata File log R R
or data
: : Q)
* Copy-on-write for file data
— Log only contains metadata Journal Dir tail
— Log is short Fle tal
e tal
C J

Atomicity
* Log-structuring for single log update
— Write, msync, chmod, etc

— Strictly commit log entry to NVMM Tail
before updating log tail

\ 4
\ 4

Directory log

* Lightweight journaling for update
across logs

— Unlink, rename, etc

— Journal log tails instead of metadata
or data

Tail Tail

\ 4

File log >

* Copy-on-write for file data Data O Data 1 Data 1 | Data 2
— Log only contains metadata

— Logis short

Performance

* Per-inode logging allows for
high concurrency Tail

Directory log

e Split data structure between

Tail
DRAM and NVMM }
— Persistent log is simple and File log
efficient X L
Data O Datal Data 2

— Volatile tree structure has no
consistency overhead

10

Performance

* Per-inode logging allows for
high concurrency

e Split data structure between
DRAM and NVMM

— Persistent log is simple and
efficient

— Volatile tree structure has no
consistency overhead

File log

Tail

Data O

Data 1

Data 2

11

NOVA layout

* Put allocator in DRAM CPU 0 CPU 1

om T mm mm mm o o = om mm mm mm mm mm o

* High scalability

| |
— Per-CPU NVMM free list, DRAM : :
journal and inode table TNYMM T T . H
. | Journal | | + | Journal | |
— Concurrent transactions . !] |
. . Uper I |node table | ' Inode table
and allocation/deallocation block | " |
Recovery ___-;,-’-/-»’\\\\ --------- !
. d 7 ~
— Inode
Inode log

12

Fast garbage collection

* Logis a linked list

* Log only contains
metadata

Tail

Head —

e Fast GC deletes dead log
pages from the linked list

* No copying

] Vaild log entry

{1 Invalid log entry

13

Thorough garbage collection

e Starts if valid log entries < 50% log length

* Format a new log and atomically replace the old one

* Only copy metadata Tail

Head —

N

] Vaild log entry {1 Invalid log entry

14

Recovery

e Rebuild DRAM structure
— Allocator CPUO CPU1

oo = mm mm = = o= om mm mm mm mm mm o

— Lazy rebuild: postpones inode radix tree rebuild ' Freelist 1 ' Freelist
* Accelerates recovery ! | ! :
* Reduces DRAM consumption I Lo !
| |
DRAM | | !
________________ e e e e e koo
* Normal shutdown recovery: NVMM ! ! !
| |
— Store allocator in recovery inode i | Journal | | [Journal |
. | |
— No log scanning Super ' Inodetable | ! Inode table |
block | ! | !
* Failure recovery: Recovery |) : | :
— Logis short inode | Recovery ! | Recovery |
v thread) + thread)
— Parallel scan NP N e

— Failure recovery bandwidth: > 400 GB/s

15

Evaluation: Latency

25

= [N N
o (O} o

Latency (microsecond)

Ul

<

Operation latency

* |Intel PM Emulation Platform
— Emulates different NVM
characteristics
— Emulates clwb/PCOMMIT
latency
* NOVA provides low latency
atomicity
Create Append (4KB) Delete

B Ext4-datajournal

Ext4-DAX HE NOVA

16

Filebench throughput

Filebench throughput

400
S 350 ‘ [
= 3.2% NOVA achieves high
2 250 4]
2 oo 212 \ \ performance with strong
8150 10% data consistency
S 100

50+

o M

Fileserver Varmail Webproxy Webserver

W Ext4-datajournal Ext4-DAX mNOVA

< 17

Garbage collection efficiency

Fileserver (95% NVMM utilization)

g * NOVA’s performance stays
= stable with increasing
3 60% drof’™ running time
C;l: Fﬂf'/ \ Fail * Fast GC reclaims the
O j\s__.______\l majority of stale pages in the

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 |Ong_term running

Running time (second)

—o—NILFS2 —e=F2FS NOVA

18

Conclusion

e Existing file systems do not meet the requirements of
applications on NVMM file systems

* NOVA’s multi-log design achieves high concurrency, efficient
garbage collection and fast recovery

* NOVA outperforms existing file systems while providing
stronger consistency and atomicity guarantees

19

Thank you!

20

Backup slides

21

Atomicity and enforce write ordering

/[Strictly commit log entry to NVMM before updating tail
new_tail = append_to_log(inode->tail, entry);

clwb(inode->tail, entry->length); /[writes back the cachelines
sfence();
PCOMMIT(); // Commits to NVMM

Tail Tail
sfence(); } }

Inode log

inode->tail = new_tail;

22

Directory operations

* mv Alice/book Bob/
* (name, inode number)

<

@

Alice tail
Bob tail
book tail

Journal

Tail Tail
Alice log | “book”, 10 | “book”, O
Tail Tail
VL \
Bob log | “book”, 10
Tail Tail

pook log [RGHEUREEN

23

Atomic file operations

e Copy-on-write for file data
° <pg0ff’ num pages> root File radix tree

* Write(8192, 8192)

Filelog | <0, 1> <1,2> | <2, 2>

Data O Datal | Data2 | Data 2 | Data 3

24

Atomic mmap

* Allocate replica pages and mmap(fd, 4096, 4096);
msync(addr, 4096);
mmap to user space
* msync() commits updates -
atomically User space
Head Tail Tail Kernel
File log

A

Data O Data 1 Data 1

@ 25
74

Evaluation

* |Intel PM Emulation Platform
e 32GB of DRAM, 64GB of NVMM

NVMM Read Write clwb PCOMMIT
latency bandwidth latency latency
STT-RAM 100 ns Full DRAM 40 ns 200 ns
PCM 300 ns 1/8 DRAM 40 ns 500 ns

 Compare to Btrfs, NILFS2, F2FS, Ext4, Ext4-data, Ext4-DAX,
PMFS

 Linux kernel 4.0 x86-64

26

Garbage collection efficiency

PERCENTAGE

@

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

GC pages percentage

10s

W Fast GC ® Thorough GC

120s
RUNNING TIME

600s

3600s

e Fast GC reclaims 94% pages
in one-hour test

27

