
1

NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories

Andiry Xu, Steven Swanson

Non-volatile Systems Laboratory
Department of Computer Science and Engineering
University of California, San Diego

2

NOVA overview

• NOVA extends LFS to leverage non-volatile memories

• NOVA proposes per-inode logging

• High performance + Strong atomicity

– 3.1x to 13.5x to file systems that have equally strong consistency
guarantees in write-intensive workloads

• POSIX compliant

https://github.com/NVSL/NOVA

3

Hybrid DRAM/NVMM system

• Non-volatile main memory (NVMM)

– PCM, STT-RAM, ReRAM, 3D XPoint technology

• File system for NVMM
Host

CPU

DRAM NVMM

NVMM FS

4

Disk-based file systems are inadequate for NVMM

• Ext4, xfs, Btrfs, F2FS, NILFS2

• Built for hard disks and SSDs

– Software overhead is high

– CPU may reorder writes to NVMM

– NVMM has different atomicity guarantees

• Cannot exploit NVMM performance

• Performance optimization compromises
consistency on system failure [1]

[1] Pillai et al, All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent
Applications, OSDI '14.

Atomicity
Ext4
wb

Ext4
order

Ext4
dataj

Btrfs xfs

1-Sector
overwrite

✓ ✓ ✓ ✓ ✓

1-Sector
append

✗ ✓ ✓ ✓ ✓

1-Block
overwrite

✗ ✗ ✓ ✓ ✗

1-Block
append

✗ ✓ ✓ ✓ ✓

N-Block
write/append

✗ ✗ ✗ ✗ ✗

N-Block
prefix/append

✗ ✓ ✓ ✓ ✓

5

NVMM file systems are not strongly consistent

• BPFS, PMFS, Ext4-DAX, SCMFS, Aerie

• None of them provide strong metadata and data consistency

File system
Metadata
atomicity

Data
atomicity

Mmap
Atomicity [1]

BPFS Yes Yes [2] No

PMFS Yes No No

Ext4-DAX Yes No No

SCMFS No No No

Aerie Yes No No

[1] Each msync() commits updates atomically.
[2] In BPFS, write times are not updated atomically with respect to the write itself.

File system
Metadata
atomicity

Data
atomicity

Mmap
Atomicity [1]

BPFS Yes Yes [2] No

PMFS Yes No No

Ext4-DAX Yes No No

SCMFS No No No

Aerie Yes No No

NOVA Yes Yes Yes

6

Why LFS?

• Log-structuring provides cheaper atomicity than journaling and
shadow paging

• NVMM supports fast, highly concurrent random accesses

– Using multiple logs does not negatively impact performance

– Log does not need to be contiguous

• Rethink and redesign log-structuring entirely

7

NOVA design goals

• Atomicity
– Combine log-structuring, journaling and copy-on-

write

• High performance
– Split data structure between DRAM and NVMM
– Highly scalable

• Efficient garbage collection
– Fine-grained log cleaning with log as a linked list
– Log only contains metadata

• Fast recovery
– Lazy rebuild
– Parallel scan

Head TailInode

Inode log

Committed entry

Uncommitted entry

Per-inode logging

8

• Log-structuring for single log update
– Write, msync, chmod, etc
– Strictly commit log entry to NVMM

before updating log tail

• Lightweight journaling for update
across logs
– Unlink, rename, etc
– Journal log tails instead of metadata

or data

• Copy-on-write for file data
– Log only contains metadata
– Log is short

File log

Directory log

Tail Tail

TailTail

Tail

Atomicity

Dir tail

File tail
Journal

9

• Log-structuring for single log update
– Write, msync, chmod, etc
– Strictly commit log entry to NVMM

before updating log tail

• Lightweight journaling for update
across logs
– Unlink, rename, etc
– Journal log tails instead of metadata

or data

• Copy-on-write for file data
– Log only contains metadata
– Log is short

File log

Directory log

Tail

Tail

Atomicity

Data 1 Data 2

Tail

Data 0 Data 1

10

• Per-inode logging allows for
high concurrency

• Split data structure between
DRAM and NVMM

– Persistent log is simple and
efficient

– Volatile tree structure has no
consistency overhead

File log

Directory log

Tail

Performance

Data 1 Data 2

Tail

Data 0

11

• Per-inode logging allows for
high concurrency

• Split data structure between
DRAM and NVMM

– Persistent log is simple and
efficient

– Volatile tree structure has no
consistency overhead

File log

Performance

Data 1 Data 2

Tail

Data 0

DRAM

NVMM

Radix tree

0 1 2 3

12

NOVA layout

DRAM

NVMM
Journal

Inode table

Free list

CPU 0

Journal

Inode table

Free list

CPU 1

Head TailInode

Inode log

Super
block

Recovery
inode

• Put allocator in DRAM

• High scalability

– Per-CPU NVMM free list,
journal and inode table

– Concurrent transactions
and allocation/deallocation

13

Fast garbage collection

• Log is a linked list

• Log only contains
metadata

• Fast GC deletes dead log
pages from the linked list

• No copying

Head

Tail

Vaild log entry Invalid log entry

14

Thorough garbage collection

• Starts if valid log entries < 50% log length

• Format a new log and atomically replace the old one

• Only copy metadata

Head

Tail

Vaild log entry Invalid log entry

15

Recovery

• Rebuild DRAM structure
– Allocator
– Lazy rebuild: postpones inode radix tree rebuild

• Accelerates recovery
• Reduces DRAM consumption

• Normal shutdown recovery:
– Store allocator in recovery inode
– No log scanning

• Failure recovery:
– Log is short
– Parallel scan
– Failure recovery bandwidth: > 400 GB/s

DRAM

NVMM
Journal

Inode table

Free list

CPU 0

Journal

Inode table

Free list

CPU 1

Super
block

Recovery
inode

Recovery
inode Recovery

thread
Recovery

thread

16

Evaluation: Latency

• Intel PM Emulation Platform
– Emulates different NVM

characteristics

– Emulates clwb/PCOMMIT
latency

• NOVA provides low latency
atomicity

0

5

10

15

20

25

Create Append (4KB) Delete

La
te

n
cy

 (
m

ic
ro

se
co

n
d

)

Operation latency

Ext4-datajournal Ext4-DAX NOVA

17

Filebench throughput

• NOVA achieves high
performance with strong
data consistency

0

50

100

150

200

250

300

350

400

450

Fileserver Varmail Webproxy Webserver

O
p

s
p

er
 s

ec
o

n
d

 (
x1

0
0

0
)

Filebench throughput

Ext4-datajournal Ext4-DAX NOVA

2.5x

2.2x

3.2x

10x

18

Garbage collection efficiency

• NOVA’s performance stays
stable with increasing
running time

• Fast GC reclaims the
majority of stale pages in the
long-term running

0

50

100

150

200

250

300

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

O
p

s
p

er
 s

ec
o

n
d

 (
x1

0
0

0
)

Running time (second)

Fileserver (95% NVMM utilization)

NILFS2 F2FS NOVA

FailFail

60% drop12x

19

Conclusion

• Existing file systems do not meet the requirements of
applications on NVMM file systems

• NOVA’s multi-log design achieves high concurrency, efficient
garbage collection and fast recovery

• NOVA outperforms existing file systems while providing
stronger consistency and atomicity guarantees

20

Thank you!

https://github.com/NVSL/NOVA

21

Backup slides

22

Atomicity and enforce write ordering

// Strictly commit log entry to NVMM before updating tail

new_tail = append_to_log(inode->tail, entry);

clwb(inode->tail, entry->length); // writes back the cachelines

sfence();

PCOMMIT(); // Commits to NVMM

sfence();

inode->tail = new_tail;
Inode log

Tail Tail

23

Directory operations

• mv Alice/book Bob/

• (name, inode number)

book log

“book”, 10Alice log

“book”, 10Bob log

“book”, 0

inode update

Tail

Tail

Tail

Alice tail

Bob tail

book tail

Journal

Tail

Tail

Tail

24

Atomic file operations

• Copy-on-write for file data

• <pgoff, num pages>

• Write(8192, 8192)

<0, 1> <1, 2>

Data 0 Data 1 Data 2

<2, 2>

Data 2 Data 3

Tail Tail

File radix treeroot

0 1 2 3

Head

File log

DRAM

NVMM

25

Atomic mmap

• Allocate replica pages and
mmap to user space

• msync() commits updates
atomically

Data 0 Data 1

Tail TailHead

File log

User space

Kernel

Replica 1

mmap(fd, 4096, 4096);

Replica 1

Replica 1Replica 1

msync(addr, 4096);

Data 1 Replica 1

26

Evaluation

• Intel PM Emulation Platform

• 32GB of DRAM, 64GB of NVMM

• Compare to Btrfs, NILFS2, F2FS, Ext4, Ext4-data, Ext4-DAX,
PMFS

• Linux kernel 4.0 x86-64

NVMM
Read

latency
Write

bandwidth
clwb

latency
PCOMMIT

latency

STT-RAM 100 ns Full DRAM 40 ns 200 ns

PCM 300 ns 1/8 DRAM 40 ns 500 ns

27

Garbage collection efficiency

0 10.7

64.3

85.4
94.2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10s 30s 120s 600s 3600s

P
ER

C
EN

TA
G

E

RUNNING TIME

GC pages percentage

Fast GC Thorough GC

• Fast GC reclaims 94% pages
in one-hour test

