
This paper is included in the Proceedings of the
14th USENIX Conference on

File and Storage Technologies (FAST ’16).
February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the
14th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories

Jian Xu and Steven Swanson, University of California, San Diego

https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 323

NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main

Memories

Jian Xu Steven Swanson

University of California, San Diego

Abstract

Fast non-volatile memories (NVMs) will soon appear on

the processor memory bus alongside DRAM. The result-

ing hybrid memory systems will provide software with sub-

microsecond, high-bandwidth access to persistent data, but

managing, accessing, and maintaining consistency for data

stored in NVM raises a host of challenges. Existing file sys-

tems built for spinning or solid-state disks introduce software

overheads that would obscure the performance that NVMs

should provide, but proposed file systems for NVMs either in-

cur similar overheads or fail to provide the strong consistency

guarantees that applications require.

We present NOVA, a file system designed to maximize

performance on hybrid memory systems while providing

strong consistency guarantees. NOVA adapts conventional

log-structured file system techniques to exploit the fast ran-

dom access that NVMs provide. In particular, it maintains

separate logs for each inode to improve concurrency, and

stores file data outside the log to minimize log size and re-

duce garbage collection costs. NOVA’s logs provide meta-

data, data, and mmap atomicity and focus on simplicity and

reliability, keeping complex metadata structures in DRAM

to accelerate lookup operations. Experimental results show

that in write-intensive workloads, NOVA provides 22% to

216× throughput improvement compared to state-of-the-art

file systems, and 3.1× to 13.5× improvement compared to

file systems that provide equally strong data consistency guar-

antees.

1. Introduction

Emerging non-volatile memory (NVM) technologies such

as spin-torque transfer, phase change, resistive memories [2,

28, 52] and Intel and Micron’s 3D XPoint [1] technology

promise to revolutionize I/O performance. Researchers have

proposed several approaches to integrating NVMs into com-

puter systems [11, 13, 19, 31, 36, 41, 58, 67], and the most

exciting proposals place NVMs on the processor’s mem-

ory bus alongside conventional DRAM, leading to hybrid

volatile/non-volatile main memory systems [4, 51, 72, 78].

Combining faster, volatile DRAM with slightly slower, denser

non-volatile main memories (NVMMs) offers the possibility

of storage systems that combine the best characteristics of

both technologies.

Hybrid DRAM/NVMM storage systems present a host of

opportunities and challenges for system designers. These sys-

tems need to minimize software overhead if they are to fully

exploit NVMM’s high performance and efficiently support

more flexible access patterns, and at the same time they must

provide the strong consistency guarantees that applications

require and respect the limitations of emerging memories

(e.g., limited program cycles).

Conventional file systems are not suitable for hybrid mem-

ory systems because they are built for the performance char-

acteristics of disks (spinning or solid state) and rely on disks’

consistency guarantees (e.g., that sector updates are atomic)

for correctness [47]. Hybrid memory systems differ from

conventional storage systems on both counts: NVMMs pro-

vide vastly improved performance over disks while DRAM

provides even better performance, albeit without persistence.

And memory provides different consistency guarantees (e.g.,

64-bit atomic stores) from disks.

Providing strong consistency guarantees is particularly

challenging for memory-based file systems because main-

taining data consistency in NVMM can be costly. Modern

CPU and memory systems may reorder stores to memory to

improve performance, breaking consistency in case of system

failure. To compensate, the file system needs to explicitly

flush data from the CPU’s caches to enforce orderings, adding

significant overhead and squandering the improved perfor-

mance that NVMM can provide [6, 76].

Overcoming these problems is critical since many applica-

tions rely on atomic file system operations to ensure their own

correctness. Existing mainstream file systems use journaling,

shadow paging, or log-structuring techniques to provide atom-

icity. However, journaling wastes bandwidth by doubling the

number of writes to the storage device, and shadow paging

file systems require a cascade of updates from the affected

leaf nodes to the root. Implementing either technique imposes

strict ordering requirements that reduce performance.

Log-structured file systems (LFSs) [55] group small ran-

dom write requests into a larger sequential write that hard

disks and NAND flash-based solid state drives (SSDs) can

process efficiently. However, conventional LFSs rely on the

availability of contiguous free regions, and maintaining those

regions requires expensive garbage collection operations. As

a result, recent research [59] shows that LFSs perform worse

than journaling file systems on NVMM.

324 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

To overcome all these limitations, we present the NOn-

Volatile memory Accelerated (NOVA) log-structured file sys-

tem. NOVA adapts conventional log-structured file system

techniques to exploit the fast random access provided by hy-

brid memory systems. This allows NOVA to support massive

concurrency, reduce log size, and minimize garbage collec-

tion costs while providing strong consistency guarantees for

conventional file operations and mmap-based load/store ac-

cesses.

Several aspects of NOVA set it apart from previous log-

structured file systems. NOVA assigns each inode a separate

log to maximize concurrency during normal operation and

recovery. NOVA stores the logs as linked lists, so they do not

need to be contiguous in memory, and it uses atomic updates

to a log’s tail pointer to provide atomic log append. For

operations that span multiple inodes, NOVA uses lightweight

journaling.

NOVA does not log data, so the recovery process only

needs to scan a small fraction of the NVMM. This also al-

lows NOVA to immediately reclaim pages when they become

stale, significantly reducing garbage collection overhead and

allowing NOVA to sustain good performance even when the

file system is nearly full.

In describing NOVA, this paper makes the following con-

tributions:

• It extends existing log-structured file system techniques to

exploit the characteristics of hybrid memory systems.

• It describes atomic mmap, a simplified interface for expos-

ing NVMM directly to applications with a strong consis-

tency guarantee.

• It demonstrates that NOVA outperforms existing journal-

ing, shadow paging, and log-structured file systems run-

ning on hybrid memory systems.

• It shows that NOVA provides these benefits across a range

of proposed NVMM technologies.

We evaluate NOVA using a collection of micro- and macro-

benchmarks on a hardware-based NVMM emulator. We find

that NOVA is significantly faster than existing file systems

in a wide range of applications and outperforms file systems

that provide the same data consistency guarantees by between

3.1× and 13.5× in write-intensive workloads. We also mea-

sure garbage collection and recovery overheads, and we find

that NOVA provides stable performance under high NVMM

utilization levels and fast recovery in case of system failure.

The remainder of the paper is organized as follows. Sec-

tion 2 describes NVMMs, the challenges they present, and

related work on NVMM file system design. Section 3 gives

a overview of NOVA architecture and Section 4 describes

the implementation in detail. Section 5 evaluates NOVA, and

Section 6 concludes.

2. Background

NOVA targets memory systems that include emerging non-

volatile memory technologies along with DRAM. This sec-

tion first provides a brief survey of NVM technologies and the

opportunities and challenges they present to system design-

ers. Then, we discuss how other file systems have provided

atomic operations and consistency guarantees. Finally, we

discuss previous work on NVMM file systems.

2.1. Non-volatile memory technologies

Emerging non-volatile memory technologies, such as

spin-torque transfer RAM (STT-RAM) [28, 42], phase

change memory (PCM) [10, 18, 29, 52], resistive RAM

(ReRAM) [22, 62], and 3D XPoint memory technology [1],

promise to provide fast, non-volatile, byte-addressable memo-

ries. Suzuki et al. [63] provides a survey of these technologies

and their evolution over time.

These memories have different strengths and weaknesses

that make them useful in different parts of the memory hierar-

chy. STT-RAM can meet or surpass DRAM’s latency and it

may eventually appear in on-chip, last-level caches [77], but

its large cell size limits capacity and its feasibility as a DRAM

replacement. PCM and ReRAM are denser than DRAM, and

may enable very large, non-volatile main memories. How-

ever, their relatively long latencies make it unlikely that they

will fully replace DRAM as main memory. The 3D XPoint

memory technology recently announced by Intel and Micron

is rumored to be one of these and to offer performance up

to 1,000 times faster than NAND flash [1]. It will appear in

both SSDs and on the processor memory bus. As a result, we

expect to see hybrid volatile/non-volatile memory hierarchies

become common in large systems.

2.2. Challenges for NVMM software

NVMM technologies present several challenges to file sys-

tem designers. The most critical of these focus on balancing

the memories’ performance against software overheads, en-

forcing ordering among updates to ensure consistency, and

providing atomic updates.

Performance The low latencies of NVMMs alters the

trade-offs between hardware and software latency. In con-

ventional storage systems, the latency of slow storage de-

vices (e.g., disks) dominates access latency, so software ef-

ficiency is not critical. Previous work has shown that with

fast NVMM, software costs can quickly dominate memory

latency, squandering the performance that NVMMs could

provide [7, 12, 68, 74].

Since NVMM memories offer low latency and will be on

the processor’s memory bus, software should be able to access

them directly via loads and stores. Recent NVMM-based file

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 325

systems [21, 71, 73] bypass the DRAM page cache and access

NVMM directly using a technique called Direct Access (DAX)

or eXecute In Place (XIP), avoiding extra copies between

NVMM and DRAM in the storage stack. NOVA is a DAX

file system and we expect that all NVMM file systems will

provide these (or similar) features. We describe currently

available DAX file systems in Section 2.4.

Write reordering Modern processors and their caching

hierarchies may reorder store operations to improve perfor-

mance. The CPU’s memory consistency protocol makes guar-

antees about the ordering of memory updates, but existing

models (with the exception of research proposals [20, 46]) do

not provide guarantees on when updates will reach NVMMs.

As a result, a power failure may leave the data in an inconsis-

tent state.

NVMM-aware software can avoid this by explicitly flush-

ing caches and issuing memory barriers to enforce write

ordering. The x86 architecture provides the clflush in-

struction to flush a CPU cacheline, but clflush is strictly

ordered and needlessly invalidates the cacheline, incurring a

significant performance penalty [6, 76]. Also, clflush only

sends data to the memory controller; it does not guarantee

the data will reach memory. Memory barriers such as Intel’s

mfence instruction enforce order on memory operations be-

fore and after the barrier, but mfence only guarantees all

CPUs have the same view of the memory. It does not impose

any constraints on the order of data writebacks to NVMM.

Intel has proposed new instructions that fix these prob-

lems, including clflushopt (a more efficient version of

clflush), clwb (to explicitly write back a cache line with-

out invalidating it) and PCOMMIT (to force stores out to

NVMM) [26, 79]. NOVA is built with these instructions

in mind. In our evaluation we use a hardware NVMM emu-

lation system that approximates the performance impacts of

these instructions.

Atomicity POSIX-style file system semantics require

many operations to be atomic (i.e., to execute in an “all or

nothing” fashion). For example, the POSIX rename re-

quires that if the operation fails, neither the file with the old

name nor the file with the new name shall be changed or

created [53]. Renaming a file is a metadata-only operation,

but some atomic updates apply to both file system metadata

and data. For instance, appending to a file atomically updates

the file data and changes the file’s length and modification

time. Many applications rely on atomic file system operations

for their own correctness.

Storage devices typically provide only rudimentary guaran-

tees about atomicity. Disks provide atomic sector writes and

processors guarantee only that 8-byte (or smaller), aligned

stores are atomic. To build the more complex atomic up-

dates that file systems require, programmers must use more

complex techniques.

2.3. Building complex atomic operations

Existing file systems use a variety of techniques like journal-

ing, shadow paging, or log-structuring to provide atomicity

guarantees. These work in different ways and incur different

types of overheads.

Journaling Journaling (or write-ahead logging) is widely

used in journaling file systems [24, 27, 32, 71] and

databases [39, 43] to ensure atomicity. A journaling system

records all updates to a journal before applying them and, in

case of power failure, replays the journal to restore the system

to a consistent state. Journaling requires writing data twice:

once to the log and once to the target location, and to im-

prove performance journaling file systems usually only jour-

nal metadata. Recent work has proposed back pointers [17]

and decoupling ordering from durability [16] to reduce the

overhead of journaling.

Shadow paging Several file systems use a copy-on-write

mechanism called shadow paging [20, 8, 25, 54]. Shadow

paging file systems rely heavily on their tree structure to

provide atomicity. Rather than modifying data in-place during

a write, shadow paging writes a new copy of the affected

page(s) to an empty portion of the storage device. Then, it

splices the new pages into the file system tree by updating

the nodes between the pages and root. The resulting cascade

of updates is potentially expensive.

Log-structuring Log-structured file systems (LFSs) [55,

60] were originally designed to exploit hard disk drives’ high

performance on sequential accesses. LFSs buffer random

writes in memory and convert them into larger, sequential

writes to the disk, making the best of hard disks’ strengths.

Although LFS is an elegant idea, implementing it effi-

ciently is complex, because LFSs rely on writing sequentially

to contiguous free regions of the disk. To ensure a consistent

supply of such regions, LFSs constantly clean and compact

the log to reclaim space occupied by stale data.

Log cleaning adds overhead and degrades the performance

of LFSs [3, 61]. To reduce cleaning overhead, some LFS

designs separate hot and cold data and apply different clean-

ing policies to each [69, 70]. SSDs also perform best under

sequential workloads [9, 14], so LFS techniques have been

applied to SSD file systems as well. SFS [38] classifies file

blocks based on their update likelihood, and writes blocks

with similar “hotness” into the same log segment to reduce

cleaning overhead. F2FS [30] uses multi-head logging, writes

metadata and data to separate logs, and writes new data di-

rectly to free space in dirty segments at high disk utilization

to avoid frequent garbage collection.

326 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

RAMCloud [44] is a DRAM-based storage system that

keeps all its data in DRAM to service reads and maintains

a persistent version on hard drives. RAMCloud applies log

structure to both DRAM and disk: It allocates DRAM in a

log-structured way, achieving higher DRAM utilization than

other memory allocators [56], and stores the back up data in

logs on disk.

2.4. File systems for NVMM

Several groups have designed NVMM-based file systems that

address some of the issues described in Section 2.2 by apply-

ing one or more of the techniques discussed in Section 2.3,

but none meet all the requirements that modern applications

place on file systems.

BPFS [20] is a shadow paging file system that provides

metadata and data consistency. BPFS proposes a hardware

mechanism to enforce store durability and ordering. BPFS

uses short-circuit shadow paging to reduce shadow paging

overheads in common cases, but certain operations that span

a large portion of the file system tree (e.g., a move between

directories) can still incur large overheads.

PMFS [21, 49] is a lightweight DAX file system that by-

passes the block layer and file system page cache to improve

performance. PMFS uses journaling for metadata updates. It

performs writes in-place, so they are not atomic.

Ext4-DAX [71] extends Ext4 with DAX capabilities to

directly access NVMM, and uses journaling to guarantee

metadata update atomicity. The normal (non-DAX) Ext4 file

system has a data-journal mode to provide data atomicity.

Ext4-DAX does not support this mode, so data updates are

not atomic.

SCMFS [73] utilizes the operating system’s virtual mem-

ory management module and maps files to large contigu-

ous virtual address regions, making file accesses simple and

lightweight. SCMFS does not provide any consistency guar-

antee of metadata or data.

Aerie [66] implements the file system interface and func-

tionality in user space to provide low-latency access to data

in NVMM. It has an optimization that improves performance

by relaxing POSIX semantics. Aerie journals metadata but

does not support data atomicity or mmap operation.

3. NOVA Design Overview

NOVA is a log-structured, POSIX file system that builds on

the strengths of LFS and adapts them to take advantage of

hybrid memory systems. Because it targets a different storage

technology, NOVA looks very different from conventional

log-structured file systems that are built to maximize disk

bandwidth.

We designed NOVA based on three observations. First,

logs that support atomic updates are easy to implement cor-

rectly in NVMM, but they are not efficient for search oper-

ations (e.g., directory lookup and random-access within a

file). Conversely, data structures that support fast search (e.g.,

tree structures) are more difficult to implement correctly and

efficiently in NVMM [15, 40, 65, 75]. Second, the complex-

ity of cleaning logs stems primarily from the need to supply

contiguous free regions of storage, but this is not necessary

in NVMM, because random access is cheap. Third, using

a single log makes sense for disks (where there is a single

disk head and improving spatial locality is paramount), but

it limits concurrency. Since NVMMs support fast, highly

concurrent random accesses, using multiple logs does not

negatively impact performance.

Based on these observations, we made the following design

decisions in NOVA.

Keep logs in NVMM and indexes in DRAM. NOVA

keeps log and file data in NVMM and builds radix trees [35]

in DRAM to quickly perform search operations, making the

in-NVMM data structures simple and efficient. We use a

radix tree because there is a mature, well-tested, widely-used

implementation in the Linux kernel. The leaves of the radix

tree point to entries in the log which in turn point to file data.

Give each inode its own log. Each inode in NOVA has

its own log, allowing concurrent updates across files without

synchronization. This structure allows for high concurrency

both in file access and during recovery, since NOVA can

replay multiple logs simultaneously. NOVA also guarantees

that the number of valid log entries is small (on the order of

the number of extents in the file), which ensures that scanning

the log is fast.

Use logging and lightweight journaling for complex

atomic updates. NOVA is log-structured because this

provides cheaper atomic updates than journaling and shadow

paging. To atomically write data to a log, NOVA first ap-

pends data to the log and then atomically updates the log

tail to commit the updates, thus avoiding both the duplicate

writes overhead of journaling file systems and the cascading

update costs of shadow paging systems.

Some directory operations, such as a move between direc-

tories, span multiple inodes and NOVA uses journaling to

atomically update multiple logs. NOVA first writes data at the

end of each inode’s log, and then journals the log tail updates

to update them atomically. NOVA journaling is lightweight

since it only involves log tails (as opposed to file data or

metadata) and no POSIX file operation operates on more than

four inodes.

Implement the log as a singly linked list. The locality

benefits of sequential logs are less important in NVMM-based

storage, so NOVA uses a linked list of 4 KB NVMM pages

to hold the log and stores the next page pointer in the end of

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 327

each log page.

Allowing for non-sequential log storage provides three

advantages. First, allocating log space is easy since NOVA

does not need to allocate large, contiguous regions for the

log. Second, NOVA can perform log cleaning at fine-grained,

page-size granularity. Third, reclaiming log pages that con-

tain only stale entries requires just a few pointer assignments.

Do not log file data. The inode logs in NOVA do not

contain file data. Instead, NOVA uses copy-on-write for

modified pages and appends metadata about the write to the

log. The metadata describe the update and point to the data

pages. Section 4.4 describes file write operation in more

detail.

Using copy-on-write for file data is useful for several rea-

sons. First, it results in a shorter log, accelerating the recovery

process. Second, it makes garbage collection simpler and

more efficient, since NOVA never has to copy file data out of

the log to reclaim a log page. Third, reclaiming stale pages

and allocating new data pages are both easy, since they just

require adding and removing pages from in-DRAM free lists.

Fourth, since it can reclaim stale data pages immediately,

NOVA can sustain performance even under heavy write loads

and high NVMM utilization levels.

The next section describes the implementation of NOVA

in more detail.

4. Implementing NOVA

We have implemented NOVA in the Linux kernel version

4.0. NOVA uses the existing NVMM hooks in the kernel

and has passed the Linux POSIX file system test suite [50].

The source code is available on GitHub: https://github.com/

NVSL/NOVA. In this section we first describe the overall

file system layout and its atomicity and write ordering mecha-

nisms. Then, we describe how NOVA performs atomic direc-

tory, file, and mmap operations. Finally we discuss garbage

collection, recovery, and memory protection in NOVA.

4.1. NVMM data structures and space management

Figure 1 shows the high-level layout of NOVA data structures

in a region of NVMM it manages. NOVA divides the NVMM

into four parts: the superblock and recovery inode, the inode

tables, the journals, and log/data pages. The superblock

contains global file system information, the recovery inode

stores recovery information that accelerates NOVA remount

after a clean shutdown (see Section 4.7), the inode tables

contain inodes, the journals provide atomicity to directory

operations, and the remaining area contains NVMM log and

data pages. We designed NOVA with scalability in mind:

NOVA maintains an inode table, journal, and NVMM free

page list at each CPU to avoid global locking and scalability

 Head Tail

Committed log entry Uncommitted log entry

Inode log

Inode

DRAM

NVMM

CPU 1

Journal

Free list

Inode table

CPU 2

Journal

Free list

Inode table

CPU 3

Journal

Free list

Inode table

CPU 4

Journal

Free list

Inode table

Super

block

Recovery

inode

Figure 1: NOVA data structure layout. NOVA has per-CPU free

lists, journals and inode tables to ensure good scalability. Each

inode has a separate log consisting of a singly linked list of 4 KB log

pages; the tail pointer in the inode points to the latest committed

entry in the log.

bottlenecks.

Inode table NOVA initializes each inode table as a 2 MB

block array of inodes. Each NOVA inode is aligned on 128-

byte boundary, so that given the inode number NOVA can

easily locate the target inode. NOVA assigns new inodes to

each inode table in a round-robin order, so that inodes are

evenly distributed among inode tables. If the inode table

is full, NOVA extends it by building a linked list of 2 MB

sub-tables. To reduce the inode table size, each NOVA inode

contains a valid bit and NOVA reuses invalid inodes for new

files and directories. Per-CPU inode tables avoid the inode

allocation contention and allow for parallel scanning in failure

recovery.

A NOVA inode contains pointers to the head and tail of its

log. The log is a linked list of 4 KB pages, and the tail always

points to the latest committed log entry. NOVA scans the log

from head to tail to rebuild the DRAM data structures when

the system accesses the inode for the first time.

Journal A NOVA journal is a 4 KB circular buffer and

NOVA manages each journal with a <enqueue, dequeue>

pointer pair. To coordinate updates that across multiple in-

odes, NOVA first appends log entries to each log, and then

starts a transaction by appending all the affected log tails to

the current CPU’s journal enqueue, and updates the enqueue

pointer. After propagating the updates to the target log tails,

NOVA updates the dequeue equal to enqueue to commit the

transaction. For a create operation, NOVA journals the

directory’s log tail pointer and new inode’s valid bit. During

power failure recovery, NOVA checks each journal and rolls

back any updates between the journal’s dequeue and enqueue.

NOVA only allows one open transaction at a time on each

core and per-CPU journals allow for concurrent transactions.

For each directory operation, the kernel’s virtual file system

328 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

(VFS) layer locks all the affected inodes, so concurrent trans-

actions never modify the same inode.

NVMM space management To make NVMM allocation

and deallocation fast, NOVA divides NVMM into pools, one

per CPU, and keeps lists of free NVMM pages in DRAM.

If no pages are available in the current CPU’s pool, NOVA

allocates pages from the largest pool, and uses per-pool locks

to provide protection. This allocation scheme is similar to

scalable memory allocators like Hoard [5]. To reduce the

allocator size, NOVA uses a red-black tree to keep the free

list sorted by address, allowing for efficient merging and

providing O(logn) deallocation. To improve performance,

NOVA does not store the allocator state in NVMM during

operation. On a normal shutdown, it records the allocator

state to the recovery inode’s log and restores the allocator

state by scanning the all the inodes’ logs in case of a power

failure.

NOVA allocates log space aggressively to avoid the need

to frequently resize the log. Initially, an inode’s log contains

one page. When the log exhausts the available space, NOVA

allocates sufficient new pages to double the log space and

appends them to the log. If the log length is above a given

threshold, NOVA appends a fixed number of pages each time.

4.2. Atomicity and enforcing write ordering

NOVA provides fast atomicity for metadata, data, and mmap

updates using a technique that combines log structuring and

journaling. This technique uses three mechanisms.

64-bit atomic updates Modern processors support 64-bit

atomic writes for volatile memory and NOVA assumes that

64-bit writes to NVMM will be atomic as well. NOVA uses

64-bit in-place writes to directly modify metadata for some

operations (e.g., the file’s atime for reads) and uses them to

commit updates to the log by updating the inode’s log tail

pointer.

Logging NOVA uses the inode’s log to record operations

that modify a single inode. These include operations such

as write, msync and chmod. The logs are independent of

one another.

Lightweight journaling For directory operations that re-

quire changes to multiple inodes (e.g., create, unlink

and rename), NOVA uses lightweight journaling to provide

atomicity. At any time, the data in any NOVA journal are

small—no more than 64 bytes: The most complex POSIX

rename operation involves up to four inodes, and NOVA

only needs 16 bytes to journal each inode: 8 bytes for the

address of the log tail pointer and 8 bytes for the value.

Enforcing write ordering NOVA relies on three write or-

dering rules to ensure consistency. First, it commits data

new_tail = append_to_log(inode->tail, entry);

// writes back the log entry cachelines

clwb(inode->tail, entry->length);

sfence(); // orders subsequent PCOMMIT

PCOMMIT(); // commits entry to NVMM

sfence(); // orders subsequent store

inode->tail = new_tail;

Figure 2: Pseudocode for enforcing write ordering. NOVA

commits the log entry to NVMM strictly before updating the log

tail pointer. The persistency of the tail update is not shown in the

figure.

and log entries to NVMM before updating the log tail. Sec-

ond, it commits journal data to NVMM before propagating

the updates. Third, it commits new versions of data pages

to NVMM before recycling the stale versions. If NOVA is

running on a system that supports clflushopt, clwb and

PCOMMIT instructions, it uses the code in Figure 2 to enforce

the write ordering.

First, the code appends the entry to the log. Then it flushes

the affected cache lines with clwb. Next, it issues a sfence

and a PCOMMIT instruction to force all previous updates to

the NVMM controller. A second sfence prevents the tail

update from occurring before the PCOMMIT. The write-back

and commit of the tail update are not shown in the figure.

If the platform does not support the new instructions,

NOVA uses movntq, a non-temporal move instruction that

bypasses the CPU cache hierarchy to perform direct writes to

NVMM and uses a combination of clflush and sfence

to enforce the write ordering.

4.3. Directory operations

NOVA pays close attention to directory operations because

they have a large impact on application performance [37, 33,

64]. NOVA includes optimizations for all the major directory

operations, including link, symlink and rename.

NOVA directories comprise two parts: the log of the direc-

tory’s inode in NVMM and a radix tree in DRAM. Figure 3

shows the relationship between these components. The di-

rectory’s log holds two kinds of entries: directory entries

(dentry) and inode update entries. Dentries include the name

of the child file/directory, its inode number, and timestamp.

NOVA uses the timestamp to atomically update the directory

inode’s mtime and ctime with the operation. NOVA appends

a dentry to the log when it creates, deletes, or renames a file

or subdirectory under that directory. A dentry for a delete

operation has its inode number set to zero to distinguish it

from a create dentry.

NOVA adds inode update entries to the directory’s log

to record updates to the directory’s inode (e.g., for chmod

and chown). These operations modify multiple fields of the

inode, and the inode update entry provides atomicity.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 329

Directory log

DRAM

NVMM

dir

bar

zoo , 10

zoo

Directory dentry tree

Step 1

Step 3

Step 2Old tail New tail

foo , 0foo , 10 bar , 20 chmod

Create dentry Inode updateDelete dentry

Figure 3: NOVA directory structure. Dentry is shown in <name,

inode_number> format. To create a file, NOVA first appends the

dentry to the directory’s log (step 1), updates the log tail as part of

a transaction (step 2), and updates the radix tree (step 3).

To speed up dentry lookups, NOVA keeps a radix tree

in DRAM for each directory inode. The key is the hash

value of the dentry name, and each leaf node points to the

corresponding dentry in the log. The radix tree makes search

efficient even for large directories. Below, we use file creation

and deletion to illustrate these principles.

Creating a file Figure 3 illustrates the creation of file zoo

in a directory that already contains file bar. The directory has

recently undergone a chmod operation and used to contain

another file, foo. The log entries for those operations are

visible in the figure. NOVA first selects and initializes an

unused inode in the inode table for zoo, and appends a create

dentry of zoo to the directory’s log. Then, NOVA uses the

current CPU’s journal to atomically update the directory’s

log tail and set the valid bit of the new inode. Finally NOVA

adds the file to the directory’s radix tree in DRAM.

Deleting a file In Linux, deleting a file requires two up-

dates: The first decrements the link count of the file’s inode,

and the second removes the file from the enclosing directory.

NOVA first appends a delete dentry log entry to the directory

inode’s log and an inode update entry to the file inode’s log

and then uses the journaling mechanism to atomically up-

date both log tails. Finally it propagates the changes to the

directory’s radix tree in DRAM.

4.4. Atomic file operations

The NOVA file structure uses logging to provide metadata

and data atomicity with low overhead, and it uses copy-on-

write for file data to reduce the log size and make garbage

collection simple and efficient. Figure 4 shows the structure

of a NOVA file. The file inode’s log records metadata changes,

and each file has a radix tree in DRAM to locate data in the

file by the file offset.

A file inode’s log contains two kinds of log entries: inode

update entries and file write entries that describe file write

File log

DRAM

NVMM

root

Data 0

<0, 1>

File radix tree

Step 3Old tail New tail

0 1 2 3

Data 1 Data 2

<2, 2>

Data 2 Data 3

Step 1

Step 2

<1, 2>

Step 4

Step 5

File write entry Data page

Figure 4: NOVA file structure. An 8 KB (i.e., 2-page) write to

page two (<2, 2>) of a file requires five steps. NOVA first writes a

copy of the data to new pages (step 1) and appends the file write

entry (step 2). Then it updates the log tail (step 3) and the radix

tree (step 4). Finally, NOVA returns the old version of the data to

the allocator (step 5).

operations and point to data pages the write modified. File

write entries also include timestamp and file size, so that

write operations atomically update the file’s metadata. The

DRAM radix tree maps file offsets to file write entries.

If the write is large, NOVA may not be able to describe it

with a single write entry. If NOVA cannot find a large enough

set of contiguous pages, it breaks the write into multiple

write entries and appends them all to the log to satisfy the

request. To maintain atomicity, NOVA commits all the entries

with a single update to the log tail pointer.

For a read operation, NOVA updates the file inode’s ac-

cess time with a 64-bit atomic write, locates the required page

using the file’s radix tree, and copies the data from NVMM

to the user buffer.

Figure 4 illustrates a write operation. The notation <file

pgoff, num pages> denotes the page offset and number of

pages a write affects. The first two entries in the log de-

scribe two writes, <0, 1> and <1, 2>, of 4 KB and 8 KB

(i.e., 1 and 2 pages), respectively. A third, 8 KB write, <2,

2>, is in flight.

To perform the <2, 2> write, NOVA fills data pages

and then appends the <2, 2> entry to the file’s inode log.

Then NOVA atomically updates the log tail to commit the

write, and updates the radix tree in DRAM, so that offset “2”

points to the new entry. The NVMM page that holds the old

contents of page 2 returns to the free list immediately. During

the operation, a per-inode lock protects the log and the radix

tree from concurrent updates. When the write system call

returns, all the updates are persistent in NVMM.

330 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

4.5. Atomic mmap

DAX file systems allow applications to access NVMM di-

rectly via load and store instructions by mapping the physical

NVMM file data pages into the application’s address space.

This DAX-mmap exposes the NVMM’s raw performance to

the applications and is likely to be a critical interface in the

future.

While DAX-mmap bypasses the file system page cache

and avoids paging overheads, it presents challenges for pro-

grammers. DAX-mmap provides raw NVMM so the only

atomicity mechanisms available to the programmer are the

64-bit writes, fences, and cache flush instructions that the

processor provides. Using these primitives to build robust

non-volatile data structures is very difficult [19, 67, 34], and

expecting programmers to do so will likely limit the useful-

ness of direct-mapped NVMM.

To address this problem, NOVA proposes a direct

NVMM access model with stronger consistency called

atomic-mmap. When an application uses atomic-mmap

to map a file into its address space, NOVA allocates replica

pages from NVMM, copies the file data to the replica pages,

and then maps the replicas into the address space. When the

application calls msync on the replica pages, NOVA handles

it as a write request described in the previous section, uses

movntq operation to copy the data from replica pages to

data pages directly, and commits the changes atomically.

Since NOVA uses copy-on-write for file data and reclaims

stale data pages immediately, it does not support DAX-mmap.

Atomic-mmap has higher overhead than DAX-mmap but

provides stronger consistency guarantee. The normal DRAM

mmap is not atomic because the operating system might ea-

gerly write back a subset of dirty pages to the file system,

leaving the file data inconsistent in event of a system fail-

ure [45]. NOVA could support atomic mmap in DRAM by

preventing the operating system from flushing dirty pages,

but we leave this feature as future work.

4.6. Garbage collection

NOVA’s logs are linked lists and contain only metadata, mak-

ing garbage collection simple and efficient. This structure

also frees NOVA from the need to constantly move data to

maintain a supply of contiguous free regions.

NOVA handles garbage collection for stale data pages and

stale log entries separately. NOVA collects stale data pages

immediately during write operations (see Section 4.4).

Cleaning inode logs is more complex. A log entry is dead

in NOVA if it is not the last entry in the log (because the

last entry records the inode’s latest ctime) and any of the

following conditions is met:

• A file write entry is dead, if it does not refer to valid data

pages.

Head

Tail

1 2 3 4

Head(a)

1 2 3 4

Head(b)

1 3 4

5

Valid log entry Invalid log entry

Figure 5: NOVA log cleaning. The linked list structure of log

provides simple and efficient garbage collection. Fast GC reclaims

invalid log pages by deleting them from the linked list (a), while

thorough GC copies live log entries to a new version of the log (b).

• An inode update that modifies metadata (e.g., mode or

mtime) is dead, if a later inode update modifies the same

piece of metadata.

• A dentry update is dead, if it is marked invalid.

NOVA mark dentries invalid in certain cases. For instance,

file creation adds a create dentry to the log. Deleting the

file adds a delete dentry, and it also marks the create dentry

as invalid. (If the NOVA garbage collector reclaimed the

delete dentry but left the create dentry, the file would seem to

reappear.)

These rules determine which log entries are alive and dead,

and NOVA uses two different garbage collection (GC) tech-

niques to reclaim dead entries.

Fast GC Fast GC emphasizes speed over thoroughness

and it does not require any copying. NOVA uses it to quickly

reclaim space when it extends an inode’s log. If all the entries

in a log page are dead, fast GC reclaims it by deleting the page

from the log’s linked list. Figure 5(a) shows an example of

fast log garbage collection. Originally the log has four pages

and page 2 contains only dead log entries. NOVA atomically

updates the next page pointer of page 1 to point to page 3 and

frees page 2.

Thorough GC During the fast GC log scan, NOVA tallies

the space that live log entries occupy. If the live entries

account for less than 50% of the log space, NOVA applies

thorough GC after fast GC finishes, copies live entries into a

new, compacted version of the log, updates the DRAM data

structure to point to the new log, then atomically replaces the

old log with the new one, and finally reclaims the old log.

Figure 5(b) illustrates thorough GC after fast GC is com-

plete. NOVA allocates a new log page 5, and copies valid log

entries in page 1 and 3 into it. Then, NOVA links page 5 to

page 4 to create a new log and replace the old one. NOVA

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 331

does not copy the live entries in page 4 to avoid updating the

log tail, so that NOVA can atomically replace the old log by

updating the log head pointer.

4.7. Shutdown and Recovery

When NOVA mounts the file system, it reconstructs the in-

DRAM data structures it needs. Since applications may ac-

cess only a portion of the inodes while the file system is

running, NOVA adopts a policy called lazy rebuild to reduce

the recovery time: It postpones rebuilding the radix tree and

the inode until the system accesses the inode for the first

time. This policy accelerates the recovery process and re-

duces DRAM consumption. As a result, during remount

NOVA only needs to reconstruct the NVMM free page lists.

The algorithm NOVA uses to recover the free lists is different

for “clean” shutdowns than for system failures.

Recovery after a normal shutdown On a clean unmount,

NOVA stores the NVMM page allocator state in the recovery

inode’s log and restores the allocator during the subsequent

remount. Since NOVA does not scan any inode logs in this

case, the recovery process is very fast: Our measurement

shows that NOVA can remount a 50 GB file system in 1.2

milliseconds.

Recovery after a failure In case of a unclean dismount

(e.g., system crash), NOVA must rebuild the NVMM allocator

information by scanning the inode logs. NOVA log scanning

is fast because of two design decisions. First, per-CPU inode

tables and per-inode logs allow for vast parallelism in log

recovery. Second, since the logs do not contain data pages,

they tend to be short. The number of live log entries in an

inode log is roughly the number of extents in the file. As

a result, NOVA only needs to scan a small fraction of the

NVMM during recovery. The NOVA failure recovery consists

of two steps:

First, NOVA checks each journal and rolls back any uncom-

mitted transactions to restore the file system to a consistent

state.

Second, NOVA starts a recovery thread on each CPU and

scans the inode tables in parallel, performing log scanning

for every valid inode in the inode table. NOVA use different

recovery mechanisms for directory inodes and file inodes:

For a directory inode, NOVA scans the log’s linked list to

enumerate the pages it occupies, but it does not inspect the

log’s contents. For a file inode, NOVA reads the write entries

in the log to enumerate the data pages.

During the recovery scan NOVA builds a bitmap of oc-

cupied pages, and rebuilds the allocator based on the result.

After this process completes, the file system is ready to accept

new requests.

4.8. NVMM Protection

Since the kernel maps NVMM into its address space dur-

ing NOVA mount, the NVMM is susceptible to corruption

by errant stores from the kernel. To protect the file system

and prevent permanent corruption of the NVMM from stray

writes, NOVA must make sure it is the only system software

that accesses the NVMM.

NOVA uses the same protection mechanism that PMFS

does. Upon mount, the whole NVMM region is mapped as

read-only. Whenever NOVA needs to write to the NVMM

pages, it opens a write window by disabling the processor’s

write protect control (CR0.WP). When CR0.WP is clear, ker-

nel software running on ring 0 can write to pages marked

read-only in the kernel address space. After the NVMM write

completes, NOVA resets CR0.WP to close the write window.

CR0.WP is not saved across interrupts so NOVA disables lo-

cal interrupts during the write window. Opening and closing

the write window does not require modifying the page tables

or the TLB, so it is inexpensive.

5. Evaluation

In this section we evaluate the performance of NOVA and

answer the following questions:

• How does NOVA perform against state-of-the-art file sys-

tems built for disks, SSDs, and NVMM?

• What kind of operations benefit most from NOVA?

• How do underlying NVMM characteristics affect NOVA

performance?

• How efficient is NOVA garbage collection compared to

other approaches?

• How expensive is NOVA recovery?

We first describe the experimental setup and then evaluate

NOVA with micro- and macro-benchmarks.

5.1. Experimental setup

To emulate different types of NVMM and study their ef-

fects on NVMM file systems, we use the Intel Persistent

Memory Emulation Platform (PMEP) [21]. PMEP is a dual-

socket Intel Xeon processor-based platform with special CPU

microcode and firmware. The processors on PMEP run at

2.6 GHz with 8 cores and 4 DDR3 channels. The BIOS marks

the DRAM memory on channels 2 and 3 as emulated NVMM.

PMEP supports configurable latencies and bandwidth for the

emulated NVMM, allowing us to explore NOVA’s perfor-

mance on a variety of future memory technologies. PMEP

emulates clflushopt, clwb, and PCOMMIT instructions

with processor microcode.

In our tests we configure the PMEP with 32 GB of DRAM

and 64 GB of NVMM. To emulate different NVMM tech-

nologies, we choose two configurations for PMEP’s mem-

332 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

NVMM
Read

latency
Write bandwidth

clwb

latency

PCOMMIT

latency

STT-RAM 100 ns Full DRAM 40 ns 200 ns

PCM 300 ns 1/8 DRAM 40 ns 500 ns

Table 1: NVMM emulation characteristics. STT-RAM emulates

fast NVMs that have access latency and bandwidth close to DRAM,

and PCM emulates NVMs that are slower than DRAM.

ory emulation system (Table 1): For STT-RAM we use the

same read latency and bandwidth as DRAM, and configure

PCOMMIT to take 200 ns; For PCM we use 300 ns for the read

latency and reduce the write bandwidth to 1/8th of DRAM,

and PCOMMIT takes 500 ns.

We evaluate NOVA on Linux kernel 4.0 against seven file

systems: Two of these, PMFS and Ext4-DAX are the only

available open source NVMM file systems that we know

of. Both of them journal metadata and perform in-place

updates for file data. Two others, NILFS2 and F2FS are log-

structured file systems designed for HDD and flash-based

storage, respectively. We also compare to Ext4 in default

mode (Ext4) and in data journal mode (Ext4-data) which

provides data atomicity. Finally, we compare to Btrfs [54], a

state-of-the-art copy-on-write Linux file system. Except for

Ext4-DAX and Ext4-data, all the file systems are mounted

with default options. Btrfs and Ext4-data are the only two file

systems in the group that provide the same, strong consistency

guarantees as NOVA.

PMFS and NOVA manage NVMM directly and do not

require a block device interface. For the other file systems,

we use the Intel persistent memory driver [48] to emulate

NVMM-based ramdisk-like device. The driver does not pro-

vide any protection from stray kernel stores, so we disable

the CR0.WP protection in PMFS and NOVA in the tests to

make the comparison fair. We add clwb and PCOMMIT

instructions to flush data where necessary in each file system.

5.2. Microbenchmarks

We use a single-thread micro-benchmark to evaluate the la-

tency of basic file system operations. The benchmark creates

10,000 files, makes sixteen 4 KB appends to each file, calls

fsync to persist the files, and finally deletes them.

Figures 6(a) and 6(b) show the results on STT-RAM and

PCM, respectively. The latency of fsync is amortized across

the append operations. NOVA provides the lowest latency

for each operation, outperforms other file systems by between

35% and 17×, and improves the append performance by

7.3× and 6.7× compared to Ext4-data and Btrfs respectively.

PMFS is closest to NOVA in terms of append and delete

performance. NILFS2 performs poorly on create oper-

ations, suggesting that naively using log-structured, disk-

oriented file systems on NVMM is unwise.

Workload
Average

file size

I/O size

(r/w)
Threads

R/W

ratio

of files

Small/Large

Fileserver 128 KB 16 KB/16 KB 50 1:2 100K/400K

Webproxy 32 KB 1 MB/16 KB 50 5:1 100K/1M

Webserver 64 KB 1 MB/8 KB 50 10:1 100K/500K

Varmail 32 KB 1 MB/16 KB 50 1:1 100K/1M

Table 2: Filebench workload characteristics. The selected four

workloads have different read/write ratios and access patterns.

NOVA is more sensitive to NVMM performance than the

other file systems because NOVA’s software overheads are

lower, and so overall performance more directly reflects the

underlying memory performance. Figure 6(c) shows the

latency breakdown of NOVA file operations on STT-RAM

and PCM. For create and append operations, NOVA only

accounts for 21%–28% of the total latency. On PCM the

NOVA delete latency increases by 76% because NOVA

reads the inode log to free data and log blocks and PCM

has higher read latency. For the create operation, the

VFS layer accounts for 49% of the latency on average. The

memory copy from the user buffer to NVMM consumes 51%

of the append execution time on STT-RAM, suggesting that

the POSIX interface may be the performance bottleneck on

high speed memory devices.

5.3. Macrobenchmarks

We select four Filebench [23] workloads—fileserver,

webproxy, webserver and varmail—to evaluate the

application-level performance of NOVA. Table 2 summarizes

the characteristics of the workloads. For each workload we

test two dataset sizes by changing the number of files. The

small dataset will fit entirely in DRAM, allowing file systems

that use the DRAM page cache to cache the entire dataset.

The large dataset is too large to fit in DRAM, so the page

cache is less useful. We run each test five times and report

the average. Figure 7 shows the Filebench throughput with

different NVMM technologies and data set sizes.

In the fileserver workload, NOVA outperforms other file

systems by between 1.8× and 16.6× on STT-RAM, and be-

tween 22% and 9.1× on PCM for the large dataset. NOVA

outperforms Ext4-data by 11.4× and Btrfs by 13.5× on

STT-RAM, while providing the same consistency guaran-

tees. NOVA on STT-RAM delivers twice the throughput

compared to PCM, because of PCM’s lower write bandwidth.

PMFS performance drops by 80% between the small and

large datasets, indicating its poor scalability.

Webproxy is a read-intensive workload. For the small

dataset, NOVA performs similarly to Ext4 and Ext4-DAX,

and 2.1× faster than Ext4-data. For the large workload,

NOVA performs between 36% and 53% better than F2FS

and Ext4-DAX. PMFS performs directory lookup by linearly

searching the directory entries, and NILFS2’s directory lock

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 333

Figure 6: File system operation latency on different NVMM configurations. The single-thread benchmark performs create, append

and delete operations on a large number of files.

Figure 7: Filebench throughput with different file system patterns and dataset sizes on STT-RAM and PCM. Each workload has

two dataset sizes so that the small one can fit in DRAM entirely while the large one cannot. The standard deviation is less than 5% of the

value.

design is not scalable [57], so their performance suffers since

webproxy puts all the test files in one large directory.

Webserver is a read-dominated workload and does not

involve any directory operations. As a result, non-DAX file

systems benefit significantly from the DRAM page cache and

the workload size has a large impact on performance. Since

STT-RAM has the same latency as DRAM, small workload

performance is roughly the same for all the file systems with

NOVA enjoying a small advantage. On the large data set,

NOVA performs 10% better on average than Ext4-DAX and

PMFS, and 63% better on average than non-DAX file systems.

On PCM, NOVA’s performance is about the same as the

other DAX file systems. For the small dataset, non-DAX file

systems are 33% faster on average due to DRAM caching.

However, for the large dataset, NOVA’s performance remains

stable while non-DAX performance drops by 60%.

Varmail emulates an email server with a large number

of small files and involves both read and write opera-

tions. NOVA outperforms Btrfs by 11.1× and Ext4-data

by 3.1× on average, and outperforms the other file systems

by between 2.2× and 216×, demonstrating its capabilities

in write-intensive workloads and its good scalability with

large directories. NILFS2 and PMFS still suffer from poor

directory operation performance.

334 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Duration 10s 30s 120s 600s 3600s

NILFS2 Fail Fail Fail Fail Fail

F2FS 37,979 23,193 18,240 Fail Fail

NOVA 222,337 222,229 220,158 209,454 205,347

GC pages

Fast 0 255 17,385 159,406 1,170,611

Thorough 102 2,120 9,633 27,292 72,727

Table 3: Performance of a full file system. The test runs a 30 GB

fileserver workload under 95% NVMM utilization with different dura-

tions, and reports the results in operations per second. The bottom

three rows show the number of pages that NOVA garbage collector

reclaimed in the test.

Overall, NOVA achieves the best performance in almost

all cases and provides data consistency guarantees that are

as strong or stronger than the other file systems. The perfor-

mance advantages of NOVA are largest on write-intensive

workloads with large number of files.

5.4. Garbage collection efficiency

NOVA resolves the issue that many LFSs suffer from, i.e.

they have performance problems under heavy write loads,

especially when the file system is nearly full. NOVA reduces

the log cleaning overhead by reclaiming stale data pages

immediately, keeping log sizes small, and making garbage

collection of those logs efficient.

To evaluate the efficiency of NOVA garbage collection

when NVMM is scarce, we run a 30 GB write-intensive

fileserver workload under 95% NVMM utilization for dif-

ferent durations, and compare with the other log-structured

file systems, NILFS2 and F2FS. We run the test with PMEP

configured to emulate STT-RAM.

Table 3 shows the result. NILFS2 could not finish the

10-second test due to garbage collection inefficiencies. F2FS

fails after running for 158 seconds, and the throughput drops

by 52% between the 10s and 120s tests due to log cleaning

overhead. In contrast, NOVA outperforms F2FS by 5.8× and

successfully runs for the full hour. NOVA’s throughput also

remains stable, dropping by less than 8% between the 10s

and one-hour tests.

The bottom half of Table 3 shows the number of pages that

NOVA garbage collector reclaimed. On the 30s test fast GC

reclaims 11% of the stale log pages. With running time rises,

fast GC becomes more efficient and is responsible for 94% of

reclaimed pages in the one-hour test. The result shows that in

long-term running, the simple and low-overhead fast GC is

efficient enough to reclaim the majority of stale log pages.

5.5. Recovery overhead

NOVA uses DRAM to maintain the NVMM free page lists

that it must rebuild when it mounts a file system. NOVA ac-

celerates the recovery by rebuilding inode information lazily,

Dataset File size Number of files Dataset size I/O size

Videoserver 128 MB 400 50 GB 1 MB

Fileserver 1 MB 50,000 50 GB 64 KB

Mailserver 128 KB 400,000 50 GB 16 KB

Table 4: Recovery workload characteristics. The number of

files and typical I/O size both affect NOVA’s recovery performance.

Dataset Videoserver Fileserver Mailserver

STTRAM-normal 156 µs 313 µs 918 µs

PCM-normal 311 µs 660 µs 1197 µs

STTRAM-failure 37 ms 39 ms 72 ms

PCM-failure 43 ms 50 ms 116 ms

Table 5: NOVA recovery time on different scenarios. NOVA is

able to recover 50 GB data in 116ms in case of power failure.

keeping the logs short, and performing log scanning in paral-

lel.

To measure the recovery overhead, we use the three work-

loads in Table 4. Each workload represents a different use

case for the file systems: Videoserver contains a few large

files accessed with large-size requests, mailserver includes

a large number of small files and the request size is small,

fileserver is in between. For each workload, we measure the

cost of mounting after a normal shutdown and after a power

failure.

Table 5 summarizes the results. With a normal shutdown,

NOVA recovers the file system in 1.2 ms, as NOVA does not

need to scan the inode logs. After a power failure, NOVA

recovery time increases with the number of inodes (because

the number of logs increases) and as the I/O operations that

created the files become smaller (because file logs become

longer as files become fragmented). Recovery runs faster on

STT-RAM than on PCM because NOVA reads the logs to

reconstruct the NVMM free page lists, and PCM has higher

read latency than STT-RAM. On both PCM and STT-RAM,

NOVA is able to recover 50 GB data in 116ms, achieving

failure recovery bandwidth higher than 400 GB/s.

6. Conclusion

We have implemented and described NOVA, a log-structured

file system designed for hybrid volatile/non-volatile main

memories. NOVA extends ideas of LFS to leverage NVMM,

yielding a simpler, high-performance file system that sup-

ports fast and efficient garbage collection and quick recovery

from system failures. Our measurements show that NOVA

outperforms existing NVMM file systems by a wide mar-

gin on a wide range of applications while providing stronger

consistency and atomicity guarantees.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 335

Acknowledgments

This work was supported by STARnet, a Semiconductor Re-

search Corporation program, sponsored by MARCO and

DARPA. We would like to thank John Ousterhout, Niraj To-

lia, Isabella Furth, and the anonymous reviewers for their

insightful comments and suggestions. We are also thankful

to Subramanya R. Dulloor from Intel for his support and

hardware access.

References

[1] Intel and Micron produce breakthrough mem-

ory technology. http://newsroom.intel.com/

community/intel_newsroom/blog/2015/07/28/

intel-and-micron-produce-breakthrough-memory-technology.

[2] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and

S. Swanson. Onyx: A protoype phase change memory storage

array. In Proceedings of the 3rd USENIX Conference on Hot

Topics in Storage and File Systems, HotStorage’11, pages 2–2,

Berkeley, CA, USA, 2011. USENIX Association.

[3] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating

Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.80

edition, May 2014.

[4] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s Talk About Stor-

age & Recovery Methods for Non-Volatile Memory Database

Systems. In Proceedings of the 2015 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’15,

pages 707–722, New York, NY, USA, 2015. ACM.

[5] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wil-

son. Hoard: A scalable memory allocator for multithreaded

applications. In ASPLOS-IX: Proceedings of the Ninth Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems, pages 117–128, New York,

NY, USA, 2000. ACM.

[6] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Impli-

cations of CPU Caching on Byte-addressable Non-volatile

Memory Programming. Technical report, HP Technical Re-

port HPL-2012-236, 2012.

[7] M. S. Bhaskaran, J. Xu, and S. Swanson. Bankshot: Caching

Slow Storage in Fast Non-volatile Memory. In Proceedings

of the 1st Workshop on Interactions of NVM/FLASH with

Operating Systems and Workloads, INFLOW ’13, pages 1:1–

1:9, New York, NY, USA, 2013. ACM.

[8] J. Bonwick and B. Moore. ZFS: The Last Word in File Sys-

tems, 2007.

[9] L. Bouganim, B. Jónsson, and P. Bonnet. uFLIP: Understand-

ing Flash IO Patterns. arXiv preprint arXiv:0909.1780, 2009.

[10] M. J. Breitwisch. Phase change memory. Interconnect Tech-

nology Conference, 2008. IITC 2008. International, pages

219–221, June 2008.

[11] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K. Gupta,

and S. Swanson. Moneta: A High-performance Storage Array

Architecture for Next-generation, Non-volatile Memories. In

Proceedings of the 43nd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 43, pages 385–395,

New York, NY, USA, 2010. ACM.

[12] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn,

and S. Swanson. Providing safe, user space access to fast,

solid state disks. In Proceedings of the seventeenth interna-

tional conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XVII, pages

387–400, New York, NY, USA, 2012. ACM.

[13] A. M. Caulfield and S. Swanson. QuickSAN: A Storage Area

Network for Fast, Distributed, Solid State Disks. In ISCA ’13:

Proceedings of the 40th Annual International Symposium on

Computer architecture, 2013.

[14] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrin-

sic characteristics and system implications of flash memory

based solid state drives. ACM SIGMETRICS Performance

Evaluation Review, 37(1):181–192, 2009.

[15] S. Chen and Q. Jin. Persistent B+-trees in Non-volatile Main

Memory. Proc. VLDB Endow., 8(7):786–797, Feb. 2015.

[16] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Optimistic crash consistency. In Proceedings

of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP ’13, pages 228–243, New York, NY, USA,

2013. ACM.

[17] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Consistency without ordering. In Proceed-

ings of the 10th USENIX Conference on File and Storage Tech-

nologies, FAST ’12, pages 9–9, Berkeley, CA, USA, 2012.

USENIX Association.

[18] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho,

J. Kim, Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee,

M. G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee,

Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo,

K. Lee, Y.-T. Lee, J. Yoo, and G. Jeong. A 20nm 1.8V 8Gb

PRAM with 40MB/s program bandwidth. In Solid-State Cir-

cuits Conference Digest of Technical Papers (ISSCC), 2012

IEEE International, pages 46–48, Feb 2012.

[19] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.

Gupta, R. Jhala, and S. Swanson. NV-Heaps: Making Persis-

tent Objects Fast and Safe with Next-generation, Non-volatile

Memories. In Proceedings of the Sixteenth International Con-

ference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’11, pages 105–118, New

York, NY, USA, 2011. ACM.

[20] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,

D. Burger, and D. Coetzee. Better I/O through byte-

addressable, persistent memory. In Proceedings of the ACM

SIGOPS 22nd Symposium on Operating Systems Principles,

SOSP ’09, pages 133–146, New York, NY, USA, 2009. ACM.

[21] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,

D. Reddy, R. Sankaran, and J. Jackson. System Software

336 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

for Persistent Memory. In Proceedings of the Ninth Euro-

pean Conference on Computer Systems, EuroSys ’14, pages

15:1–15:15, New York, NY, USA, 2014. ACM.

[22] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills,

K. Tsutsui, J. Javanifard, K. Tedrow, T. Tsushima, Y. Shiba-

hara, and G. Hush. A 16Gb ReRAM with 200MB/s write

and 1GB/s read in 27nm technology. In Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2014 IEEE

International, pages 338–339, Feb 2014.

[23] Filebench file system benchmark. http://sourceforge.net/

projects/filebench.

[24] R. HAGMANN. Reimplementing the cedar file system using

logging and group commit. In Proc. 11th ACM Symposium

on Operating System Principles Austin, TX, pages 155–162,

1987.

[25] D. Hitz, J. Lau, and M. A. Malcolm. File system design for an

NFS file server appliance. In USENIX Winter, pages 235–246,

1994.

[26] Intel Architecture Instruction Set Extensions Program-

ming Reference. https://software.intel.com/sites/default/files/

managed/0d/53/319433-022.pdf.

[27] S. G. International. XFS: A High-performance Journaling

Filesystem. http://oss.sgi.com/projects/xfs.

[28] T. Kawahara. Scalable Spin-Transfer Torque RAM Technol-

ogy for Normally-Off Computing. Design & Test of Comput-

ers, IEEE, 28(1):52–63, Jan 2011.

[29] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting

phase change memory as a scalable DRAM alternative. In

ISCA ’09: Proceedings of the 36th Annual International Sym-

posium on Computer Architecture, pages 2–13, New York,

NY, USA, 2009. ACM.

[30] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A New File

System for Flash Storage. In 13th USENIX Conference on File

and Storage Technologies, FAST ’15, pages 273–286, Santa

Clara, CA, Feb. 2015. USENIX Association.

[31] E. Lee, H. Bahn, and S. H. Noh. Unioning of the Buffer

Cache and Journaling Layers with Non-volatile Memory. In

Presented as part of the 11th USENIX Conference on File and

Storage Technologies, FAST ’13, pages 73–80, San Jose, CA,

2013. USENIX.

[32] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks.

SIGOPS Oper. Syst. Rev., 30(5):84–92, Sept. 1996.

[33] P. H. Lensing, T. Cortes, and A. Brinkmann. Direct Lookup

and Hash-based Metadata Placement for Local File Systems.

In Proceedings of the 6th International Systems and Storage

Conference, SYSTOR ’13, pages 5:1–5:11, New York, NY,

USA, 2013. ACM.

[34] Persistent Memory Programming. http://pmem.io.

[35] Trees I: Radix trees. https://lwn.net/Articles/175432/.

[36] D. E. Lowell and P. M. Chen. Free Transactions with Rio Vista.

In SOSP ’97: Proceedings of the Sixteenth ACM Symposium

on Operating Systems Principles, pages 92–101, New York,

NY, USA, 1997. ACM.

[37] Y. Lu, J. Shu, and W. Wang. ReconFS: A Reconstructable File

System on Flash Storage. In Proceedings of the 12th USENIX

Conference on File and Storage Technologies, FAST’14, pages

75–88, Berkeley, CA, USA, 2014. USENIX Association.

[38] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS:

Random Write Considered Harmful in Solid State Drives.

In Proceedings of the 10th USENIX Conference on File and

Storage Technologies, FAST ’12, page 12, 2012.

[39] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and

P. Schwarz. ARIES: A Transaction Recovery Method Sup-

porting Fine-granularity Locking and Partial Rollbacks Using

Write-ahead Logging. ACM Trans. Database Syst., 17(1):94–

162, 1992.

[40] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ran-

ganathan, and N. Binkert. Consistent, Durable, and Safe Mem-

ory Management for Byte-addressable Non Volatile Main

Memory. In Proceedings of the First ACM SIGOPS Confer-

ence on Timely Results in Operating Systems, TRIOS ’13,

pages 1:1–1:17, New York, NY, USA, 2013. ACM.

[41] D. Narayanan and O. Hodson. Whole-system Persistence with

Non-volatile Memories. In Seventeenth International Confer-

ence on Architectural Support for Programming Languages

and Operating Systems (ASPLOS 2012). ACM, March 2012.

[42] H. Noguchi, K. Ikegami, K. Kushida, K. Abe, S. Itai,

S. Takaya, N. Shimomura, J. Ito, A. Kawasumi, H. Hara,

and S. Fujita. A 3.3ns-access-time 71.2uW/MHz 1Mb em-

bedded STT-MRAM using physically eliminated read-disturb

scheme and normally-off memory architecture. In Solid-State

Circuits Conference (ISSCC), 2015 IEEE International, pages

1–3, Feb 2015.

[43] Berkeley DB. http://www.oracle.com/technology/products/

berkeley-db/index.html.

[44] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee,

B. Montazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum,

S. Rumble, R. Stutsman, and S. Yang. The RAMCloud Stor-

age System. ACM Trans. Comput. Syst., 33(3):7:1–7:55, Aug.

2015.

[45] S. Park, T. Kelly, and K. Shen. Failure-atomic Msync(): A

Simple and Efficient Mechanism for Preserving the Integrity

of Durable Data. In Proceedings of the 8th ACM European

Conference on Computer Systems, EuroSys ’13, pages 225–

238, New York, NY, USA, 2013. ACM.

[46] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency.

In Proceeding of the 41st Annual International Symposium on

Computer Architecture, ISCA ’14, pages 265–276, Piscataway,

NJ, USA, 2014. IEEE Press.

[47] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany,

A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. All File

Systems Are Not Created Equal: On the Complexity of Craft-

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 337

ing Crash-Consistent Applications. In 11th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI

14), pages 433–448, Broomfield, CO, Oct. 2014. USENIX

Association.

[48] PMEM: the persistent memory driver + ext4 direct access

(DAX). https://github.com/01org/prd.

[49] Persistent Memory File System. https://github.com/

linux-pmfs/pmfs.

[50] Linux POSIX file system test suite. https://lwn.net/Articles/

276617/.

[51] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable

high performance main memory system using phase-change

memory technology. In Proceedings of the 36th Annual In-

ternational Symposium on Computer Architecture, ISCA ’09,

pages 24–33, New York, NY, USA, 2009. ACM.

[52] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen,

R. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H. L. Lung,

and C. Lam. Phase-change random access memory: A scal-

able technology. IBM Journal of Research and Development,

52(4.5):465–479, July 2008.

[53] POSIX 1003.1 - man page for rename. http://www.unix.com/

man-page/POSIX/3posix/rename/.

[54] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux B-Tree

Filesystem. Trans. Storage, 9(3):9:1–9:32, Aug. 2013.

[55] M. Rosenblum and J. K. Ousterhout. The design and imple-

mentation of a log-structured file system. ACM Transactions

on Computer Systems (TOCS), 10(1):26–52, 1992.

[56] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured

Memory for DRAM-based Storage. In Proceedings of the

12th USENIX Conference on File and Storage Technologies,

FAST ’14, pages 1–16, Santa Clara, CA, 2014. USENIX.

[57] R. Santana, R. Rangaswami, V. Tarasov, and D. Hildebrand.

A Fast and Slippery Slope for File Systems. In Proceedings

of the 3rd Workshop on Interactions of NVM/FLASH with

Operating Systems and Workloads, INFLOW ’15, pages 5:1–

5:8, New York, NY, USA, 2015. ACM.

[58] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere,

and J. J. Kistler. Lightweight recoverable virtual memory. In

SOSP ’93: Proceedings of the Fourteenth ACM Symposium

on Operating Systems Principles, pages 146–160, New York,

NY, USA, 1993. ACM.

[59] P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti. An

Empirical Study of File Systems on NVM. In Proceedings

of the 2015 IEEE Symposium on Mass Storage Systems and

Technologies (MSST’15), 2015.

[60] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An

implementation of a log-structured file system for UNIX. In

Proceedings of the USENIX Winter 1993 Conference Proceed-

ings on USENIX Winter 1993 Conference Proceedings, pages

3–3. USENIX Association, 1993.

[61] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. Mc-

Mains, and V. Padmanabhan. File System Logging Versus

Clustering: A Performance Comparison. In Proceedings of the

USENIX 1995 Technical Conference Proceedings, TCON’95,

pages 21–21, Berkeley, CA, USA, 1995. USENIX Associa-

tion.

[62] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams.

The missing memristor found. Nature, 453(7191):80–83,

2008.

[63] K. Suzuki and S. Swanson. The Non-Volatile Memory Tech-

nology Database (NVMDB). Technical Report CS2015-1011,

Department of Computer Science & Engineering, University

of California, San Diego, May 2015. http://nvmdb.ucsd.edu.

[64] C.-C. Tsai, Y. Zhan, J. Reddy, Y. Jiao, T. Zhang, and D. E.

Porter. How to Get More Value from Your File System Di-

rectory Cache. In Proceedings of the 25th Symposium on

Operating Systems Principles, SOSP ’15, pages 441–456,

New York, NY, USA, 2015. ACM.

[65] S. Venkataraman, N. Tolia, P. Ranganathan, and R. Campbell.

Consistent and durable data structures for non-volatile byte-

addressable memory. In Proceedings of the 9th USENIX

Conference on File and Storage Technologies, FAST ’11, San

Jose, CA, USA, February 2011.

[66] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Sax-

ena, and M. M. Swift. Aerie: Flexible File-system Interfaces

to Storage-class Memory. In Proceedings of the Ninth Euro-

pean Conference on Computer Systems, EuroSys ’14, pages

14:1–14:14, New York, NY, USA, 2014. ACM.

[67] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:

Lightweight Persistent Memory. In ASPLOS ’11: Proceeding

of the 16th International Conference on Architectural Support

for Programming Languages and Operating Systems, New

York, NY, USA, 2011. ACM.

[68] D. Vučinić, Q. Wang, C. Guyot, R. Mateescu, F. Blagojević,

L. Franca-Neto, D. L. Moal, T. Bunker, J. Xu, S. Swanson,

and Z. Bandić. DC Express: Shortest Latency Protocol for

Reading Phase Change Memory over PCI Express. In Pro-

ceedings of the 12th USENIX Conference on File and Storage

Technologies, FAST ’14, pages 309–315, Santa Clara, CA,

2014. USENIX.

[69] J. Wang and Y. Hu. WOLF-A Novel Reordering Write Buffer

to Boost the Performance of Log-Structured File Systems.

In Proceedings of the 1st USENIX Conference on File and

Storage Technologies, FAST ’02, pages 47–60, Monterey, CA,

2002. USENIX.

[70] W. Wang, Y. Zhao, and R. Bunt. HyLog: A High Performance

Approach to Managing Disk Layout. In Proceedings of the

3rd USENIX Conference on File and Storage Technologies,

volume 4 of FAST ’04, pages 145–158, San Francisco, CA,

2004. USENIX.

[71] M. Wilcox. Add support for NV-DIMMs to ext4. https:

//lwn.net/Articles/613384/.

[72] M. Wu and W. Zwaenepoel. eNVy: A Non-volatile, Main

338 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Memory Storage System. In Proceedings of the Sixth Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS-VI, pages 86–

97, New York, NY, USA, 1994. ACM.

[73] X. Wu and A. L. N. Reddy. SCMFS: A File System for

Storage Class Memory. In Proceedings of 2011 International

Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’11, pages 39:1–39:11, New York,

NY, USA, 2011. ACM.

[74] J. Yang, D. B. Minturn, and F. Hady. When poll is better than

interrupt. In Proceedings of the 10th USENIX Conference on

File and Storage Technologies, FAST ’12, pages 3–3, Berkeley,

CA, USA, 2012. USENIX.

[75] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He.

NV-Tree: Reducing Consistency Cost for NVM-based Single

Level Systems. In 13th USENIX Conference on File and

Storage Technologies, FAST ’15, pages 167–181, Santa Clara,

CA, Feb. 2015. USENIX Association.

[76] Y. Zhang and S. Swanson. A Study of Application Perfor-

mance with Non-Volatile Main Memory. In Proceedings of

the 2015 IEEE Symposium on Mass Storage Systems and

Technologies (MSST’15), 2015.

[77] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:

Closing the Performance Gap Between Systems With and

Without Persistence Support. In Proceedings of the 46th

Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO-46, pages 421–432, New York, NY, USA,

2013. ACM.

[78] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and

energy efficient main memory using phase change memory

technology. In ISCA ’09: Proceedings of the 36th Annual

International Symposium on Computer Architecture, pages

14–23, New York, NY, USA, 2009. ACM.

[79] R. Zwisler. Add support for new persistent memory instruc-

tions. https://lwn.net/Articles/619851/.

